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Abstract

The virtual boundary method is extended to a 3D application and used to simulate the fow field of two spheres in

tandem arrangement for a Reynolds number of 300. The wake structures and flow spectra at various gaps are investigated. The numerical

results show that for small gaps (1. 5), due to the mutual suppress between the wakes of the two spheres, the full flow field is stable

and axisymmetric. As the gap is increased to 2. 0, an asymmetric but stable flow is constucted through a certain bifurcation. The

downstream wake structure is characterized by a double-thread vortex structure that comprises two slender parallel vortex tubes. The

double-thread structure has a planar symmetry at gap 2. 0. The hairpin-shape vortices are periodically shed from the dow nstream sphere at

gap 2.5 but the planar symmetry pemsists. The vortex stmctures at gaps ranging from 3.0 to 4.0 are irregular and the fbw field is

undergoing a kind of 3D transition. It is up to the large gap 5. 0 that the hairpin-shape structures are reconstructed behind the upstream

and the downstream sphere and the planar symmetry is resumed. All these numerical computations were performed on an SG1 Origin3900

machine at the Center for Engineering and Scientific Computation of Zhejiang University.

Keywords:

The flow around a sphere is a fundamental
problem of fluid dynamics. Although the sphere is the
simplest geometry, a number of natural and
engineering applications exist such as air pollution,

combustion system and chemical processes.

Some valuable results of flow past a single
sphere, especially the transitions between different
flow regimess have been achieved
experimentally ' . Flow around a single sphere in a
uniform flow separates from the surface to form a
stable and axisymmetric toroidal vortex at Reynolds
number Re=24, where Re is defined in terms of the
uniform flow velocity and the diameter of the sphere.
The stable flow changes to an asymmetric stable flow
through a bifurcation at Re ~210. A new unstable
oscillating flow is formed at Re=>270 and the hairpin-
shape vortices are periodically shed from the sphere.
In the 1990s, a number of numerical simulations for
flow past a single sphere were performed. But being
restricted by the speed of CPU, storage capacity and
algorithm, the axisymmelry assumption incorrect for
Re™ 210 was made in most simulations. The
primitive 3D unsteady Navier-Stokes equations were
solved by Johnson'? and Lee'™ to simulate the flow
past a single sphere, and their results compared well

virtual boundary method flow past two spheres wake structure, flow spectra.

with previous experimental observations.

Little work has been performed to study the
interactions of the wakes of two spheres in tandem or
side-by-side arrangement. In the early 1980s, some
qualitative experimental results for flow past two
spheres were achieved by Yutakd . The latest
experimental study on wakes of two spheres placed
side by side was carried out by Schouveiler” and
distinctly different regimes of interactions were
observed,
spheres.

depending on the gap between two

Due to the difficulty in grid generation for the
multiply-connected domain of flow past two spheres
no numerical method based on finite difference has
been reported. To avoid this difficulty, for flow past
two spheres placed side by side at low Reynolds
numbers, symmetry was assumed and the physical
domain was reduced to one quarter of an ellipsoid-like
computational field by Kim'® . Thus, the calculation
was performed on a simply connected domain
containing only one quarter of a single sphere, and
the dependence of the force on sphere surfaces and the

vortex structure on the gap was investigated.

In this paper, the virtual boundary method first
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presented by Goldstein'” has been modified slightly
and extended to a 3D application. The currently
modified and extended virtual boundary method
(called virtual body method here) is then used to
study the interaction between the upstream wake and
the downstream wake.

1 Virtual body method

The so-called virtual boundary method based on
regular meshes was first presented by Goldstein to
model a no-slip boundary in flow field. The solid
domain is assumed to be filled with fluid and a virtual
body-force field is introduced into the Navier-Stokes
equations such that a desired velocity distribution
can be assigned to the fluid points on no-slip
boundary. The body force field introduced in their
work is governed by the following feed-back loop

‘

F(xs, t) =a O[M(xs, ) —v (xe T]dT
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where a and 3 are two negative constants; X denotes
a boundary point and u (xs, ¢) is the fluid velocity at
xs; the velocity of the solid boundary point itself is
v (xs» t). Using a pseudo-spectral method,
Goldstein applied this procedure to simulate a start up
flow around a stationary cylinder.

To well define the no-slip boundary condition, large
enough | | and | Bl are needed. which makes the
governing equations stiff and the stability limit rigid. A
Courant-F riedrichs-Lewy number (CFL) with an order of
10 7 is used in Goldstein’ s simulations. The expensive
time consumption makes the simulation of flow in complex
geometry impossible. Therefore, an alterative expression
for the added body-force on noslip boundary was

presented by Fadlun''?,
i1 n

F"' = RHS"+ %, @)
where v' " !is the velocity of solid boundary point at
current time level # +A¢, and 4" is the corresponding
fluid velocity at ¢ time level; the term RHS" contains
the convective, viscous and pressure gradient terms in
momentum equation at ¢ time level. Thus, at every
time level the boundary condition can be defined
exactly and no rigid stability limit results from the
body-force Eq. (2) introduced into the Navier-Stokes
equations.

1.1 Modification of virtual boundary method

The idea of -the,virtual beundary method. was

introduced previously. Goldstein and Fadlun imposed
the added body-force only at points defining the no-
slip boundary; thus unphysical fluid motion was
allowed inside the body. But in our study, the added
body-force given by Eq. (2) is imposed inside the
body as well as on the boundary. With this slight
modification the computational efficiency is improved
considerably and no numerical flow is allowed inside
the body which is especially essential for moving body
problem.

1.2 Interpolation procedure

Inside the body, the added body-force can be
calculated directly at grid point using the ex pression
given by Eq. (2). A certain interpolation procedure is
needed to distribute the added body-force on the
curved surface to the grid points nearby. Detailed
description is given as follows (Fig. 1): pr(xp yp
z¢) is a grid point near the solid surface and ps(xs
Vs zs) is the surface point lying on the line
connecting pr and the sphere center. The field values
of four points (denoted by a, b, ¢ and d) with one
grid away from ps are achieved using the bilinear
interpolation scheme, then the body-force F (x4 ys
z¢) of ps can be computed. Since the surface point is
not coincident with the grid site, the effect of the
body-force F(xs, ys, zs) should be distributed to the
nearby grid point prusing linear interpolation, F(xp
v zp)= (—ds/dxyz) F(xs ys zs). Here dxyz is
the diagonal length of grid element and ds is the
radial distance between ps and pt. It should be noted
that the body-force is equal to zero for grid points
with condition ds™dxyz satisfied.
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Fig. 1.

Body force on surface distributed to meshes near wall.

We call the modified numerical method a virtual
body method. In our computation, the Navier-Stokes
equations are discretized by finite differences on
regular meshes system. It is easy to code and a
procedure  with high performance is

developed. All the simulations here are performed on

parallel

an 19G L. . Onigip 3900, .machine of ,-the  Center  for
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Engineering and Scientific Computation of Zhejiang

University. In the following simulations, the

dimensionless spacial increment and time step are set
to be 0.05 and 0. 005, respectively (i.e. CFL=0.
D.

2 Solution of governing equations

The non-dimensional Navier-Stokes equations for

incompressible viscous flow are written as

V ° V: 09
DV _ 2 3
Dy —Vp Jr V V+ Fadas

where Foqa=(Fx Fy, F2) is the added force vector. The

diameter D is used as the length scale and the uniform
free-stream velocity is the characteristic velodty.

A rectangular computational domain is designed.
A free-stream velocity condition is used at the inflow
and far field boundaries. A non-reflecting condition is
used at the outflow boundary. A pressure Neumann
condition is applied to inflow, far field and outflow
boundaries and there is no pressure condition needed
for the no-slip boundary. The initial flow field is at

rest.

We used the Eulerexplicit time discretization
scheme for convective terms and the second-order-
implicit Crank-Nicholson scheme for viscous terms.
Spacial derivatives are discretized by second-order
central finite difference. Ignore the term of O (A7),
and the finally obtained algebraic equations system
can be solved using generic TDMA algorithm at x
and y direction successively.

The pressure variable is solved from the pressure
Poisson equation which is derived by applying the
divergence operator to the momentum equations. The
time dependent term of the pressure Poisson equation
is dealt with by Harlow’ s method " and the
derivatives are discretized by second-order central
difference. To satisfy the compatibility condition, the
pressure condition is evaluated at half-grid points near
boundary' '* ¥,

3 Flow regimes of a single sphere: validation
of computational code

To validate the present code, the transitions of
wake regimes for flow past a single sphere are

the calculated wake

structure is visualized using the definition of a vortex

investigated. In this paper,

as , a,,connected - region , containing two  negatiye

eigenvalues of the §*+ Q% tensor (here § and  are
respectively the symmetric and antisymmetric parts of
the velocity ﬁradlent tensor )  proposed by
Jeong &Hussain' 1. The vortex structures at
Reynolds numbers 200, 225, 250 and 275 are listed
in Fig. 2, respectively. Two bifurcations are well
captured and the two Reynolds numbers of transitions
(200<< Re.1<< 225, 250<< Re:»<< 275) are in good

agreement with the ex perimental

shedding
frequency at Re=275 is about 0.123 which compares

corresponding

results mentioned above. The vortex

well with the experimental results of Ref. [ 3] .
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Fig. 2. Vortex stmctures past a single sphere. (a) Re=200;
(b) Re=1225; (¢) Re=250; (d) Re=275.

4 Flow regimes of two spheres system

Figure 3 is the schematic sketch of the flow
domain of two spheres with the primary scale
parameters, 7.5 D highand 7.5 D wide. The origin
of the coordinate system is located at the center of the
downstream sphere. A boundary condition with a
freestream velocity of u=1 is applied at the inlet and
At the outlet

boundary condition is enforced. The various flow

outer boundaries. a nonreflecting
regimes are presented in the follow ing as a function of
gap ratio L/D. The same Reynolds number 300 is
studied for all the simulations.

3D L 100

\

Fig. 3. Scale parameters of the computational domain.

It is known that at Re=300 the regular hairpin-
shape vortices are periodically shed from the single
sphere. From Fig. 4, we find that for small gaps
(#1.5), due to the mutual suppress between the
wakes of the two spheres, the full flow field is stable

andiaxisymmetrics A vortex ring. is confined hetween
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the two spheres.

Fig. 4.

Stream lines on ( x, y) plane for L/ D=1.5.

At L/D = 2. 0, the flow is stable but
A double-thread
dragging two slender parallel vortex tubes is observed
in the downstream wake (Fig.5). Suppressed by the
downstream sphere, the double-thread structure of

asymmetric. vortical structure

the upstream wake cannot be full developed and the
rear of the upstream vortex structure is captured by
the front part of the dow nstream sphere.

(a) (b)

Qb Cly

Fig. 5. Wake structure for L/ D=2.0. (a) x-y view; (b) x-z

view.

To understand the transfer property of fluid in
the flow field, the paths of several particles originated
from either side of, and just out of, the plane which
has an angle of —45" with the (x,y) plane near the
sphere are shown in Fig. 6. From Fig. 6 (a), we
know that the flow field is symmetric with respect to
the plane mentioned here. In the upstream wake, the
upper fluid spirals counterclockwise inward, and then
emerges from the center of the upper focus and feeds
into the downstream flow field passing through the
bottom part of the downstream sphere. The pathline
in the downstream wake is similar to that of a single
sphere. The lower fluid of the downstream wake
spirals counterclockwise inward, and then emerges
from the center of the focus and feeds into the center
of the upper focus, where it spirals clockwise
outward, and eventually passing around the lower
focus and joining the downstream flow .

At gap 2.5 an unstable oscillating flow is formed in
the flow field and the
periodically shed from the downstream sphere (Fig. 7).
The hairpin structure of the upstream sphere has not been
well organized at the present gap 2.5,

hairpin-shape vortices are

Fig. 6.
view with an angle 45° from (x, ») plane; (b) Plane view with an

Particle path near two spheres for L/ D=2.0. (a) Plane

angle — 45 from (x, y) plane.

(a) (b}
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Fig. 7. Wake structure for L/ D=2.5. (a) xy view; (b) xz

view .

It is interesting that a plane of symmetry can be
found in the unstable flow field (Fig. 8). The
position of the plane of symmetry is equal to that of
flow field at gap 2.0.

(b}

Fig. 8. Streamlines near two spheres for L/ D=2.5. (a) Plane
view with an angle 45° from (x, y) plane (b) Plane view with an

angle —45 from (x,y) plane.

As the gap between two spheres keeps on being
increased, an irregular osdllating flow is formed in the
wake of the upstream sphere (Fig. 9). A spiral-shape
vortex structure extending to the outlet along the
centerline can be dearly found in the dow nstream wake
and the flow field is mot plane-symmetric any more.

The gap 4. 0 is so large that a single loop of
structure is formed between two

10 ). Due to the effect of

hairpin-shape

spheres  ( Fig.
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(b)

PN

(R

structure has a planar symmetry.

(iii) At gap 2.5, the hairpin-shape vortices are

Fig. 9. Wake structure for L/ D=13.0. (a) x-y view; (b) x-z

view.

synchronization, the vortex structure in the
downstream wake is forced to reorganize and the

hairpin-shape structure has a tendency to be well

resumed .
(a) (b)
Y“!’f e
Fig. 10. W ake structure for L/ D=4.0. (a) x-y view; (b) x-z

view.

As the large gap 5.0 is reached, regular hairpin-
shape structures are shed from the downstream sphere as
well as the upstream sphere, and the symmetry is
resumed now in the plare as mentioned above (Fig. 11).

(a) (h)

Fig. 11.

view.

W ake structure for L/ D=5.0. (a) x-y view; (b) x-z

5 Conclusion

In this paper, the virtual boundary method provided
by Goldstein is modified slightly and the computational
performance has a distinct improvement. The modified
method is extended to a 3D application and the flow field
of two spheres in tandem arrangement at different gaps is
invedtigated. Due to the
spheres  the

interactions between two
flow regimes are found to be more

complicated than that of a single sphere.

() At small gap (*¥1.5), due to the mutual
suppress between the wakes of the two spheres, the

full flow field is stable and axisymmetric.

Gi) At gap 2.0, an asymmetric but stable flow
is constructed through a certain bifurcation. The
downstream wake structure is characterized by a
double-thread vortical structure that comprises two

dender  parallel vortex tubes., The  double-thread

periodically shed from the downstream sphere, but
the planar symmetry remains.

(iv) The vortex structures at gaps ranging from
3.0 to 4.0 are irregular and a kind of 3D transition
happens.

(v) At gap 5.0 the hairpin-shape structures are
and the
downstream sphere and the planar symmetry is

reconstructed behind the upstream

resumed.
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